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Abstract. Spaced  using linear sequences of time-based  commands.  Linear  sequences  work fairly 
well, but they are difficult and expensive to generate, and are usually not capable of responding to 
contingencies. Any anomalous  behavior  while  executing a linear sequence  generally results in the 
spacecraft  entering a safe  mode. Critical sequences like orbit insertions which  must  be  able to 
respond to faults without  going into safe mode are particularly difficult to design and verify. The 
effort  needed to generate  command  sequences  can be reduced by extending  the  vocabulary of 
sequences to include  more  sophisticated  control  constructs.  The  simplest  extensions  are 
conditionals  and loops. Adding these constructs would make a sequencing  language  look  more  or 
less  like a traditional programming  language or scripting language, and would  come  with all the 
difficulties associated  with  such  a  language. In particular, verifying the correctness of a sequence 
would be tantamount to verifying the correctness of a program, which is  undecidable in general. 
We describe an extended vocabulary for non-linear  sequencing based on the architectural notion of 
cognizant failure. A  cognizant failure architecture is  divided into components whose contract  is to 
either achieve (or maintain) a certain condition, or report that they have failed to do so. Cognizant 
failure is an easier condition to verify  than correctness, but  it  can  provide  high  confidence in the 
safety of the spacecraft. Because  cognizant failure inherently implies  some kind  of representation 
of the intent of  an action, the system  can  respond to contingencies in more  robust  and  general 
ways.  We will describe an implemented  non-linear  sequencing  system that is being  flown  on the 
NASA New Millennium  Deep  Space 1 Mission as part of the Remote  Agent  Experiment. 

INTRODUCTION 
Spacecraft are traditionally controlled by linear sequences of open-loop  commands.  This  command  methodology has 
a number of drawbacks.  Sequences are time-consuming and expensive to generate, they require the ability to predict 
the state of the spacecraft in detail, and  they are brittle in the face of unexpected  contingencies.  These  problems are 
magnified  when  faced  with  the  requirement  for a critical sequence  like an orbit  insertion,  where  unexpected 
contingencies  cannot be allowed to  simply  send the spacecraft into a quiescent safe mode. 

In this paper we describe a new approach to spacecraft sequencing which  we call nonlinear  or  conditional  sequencing. 
Non-linear  sequences are composed of closed-loop  commands whose contract is to either achieve a certain condition 
or report that they have failed to achieve it. This  design constraint - that all commands report when  they have failed 
to achieve their intended effects - is known as cognizant failure, and it results in new,  more  complex  execution 
semantics for sequences.  However, the complexity  can be  hidden behind a layer of abstraction (a language).  The 
resulting interface is a rich  vocabulary for giving  a spacecraft instructions that produce robust, intentional behavior. 
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LINEAR SEQUENCES 

Nominal semantics 

The  execution  semantics of traditional linear sequences are very simple.  A  command typically consists of  an 
execution time, a  command  code, and a set of parameters.  The  command  code is an index into a table of subroutines 
which are called by the spacecraft  sequencer in response to sequence uplinks. The repertoire of subroutines in the 
command  table defines the command  dictionary for the  spacecraft. 

Sequence  execution nominally  proceeds according to a very simple algorithm: 

1. Wait for the time of the next command 
2. Call the subroutine  corresponding to the command code 
3. Go to step 1 

Note that the semantics of a  sequence are order-independent, since every  sequence step is tagged with  an execution 
time. A  command  sequence  can  therefore be modeled as an unordered  set of (time,  command)  pairs.  The 
"sequentiality" of a sequence  does not arise from its lexical structure, but  from its execution  semantics  and the 
monotonicity of time. Time is the "program  counter" for a traditional spacecraft sequence. 

The fact that traditional linear sequence  execution is fundamentally  driven by time has important  consequences for 
sequence analysis. For  example, linear sequences are always  guaranteed to terminate, which  helps  make  sequence 
analysis  tractable.  The difficulty of sequence analysis derives  from the complex effects and  interactions of the 
individual commands, not from  complications arising from the theory  of computation. 

Fault semantics 

Unfortunately, this simple picture is significantly disturbed when anomalous  behavior (usually caused by hardware 
faults) is taken in to account.  The spacecraft's normal  response to anomalies is to abort the sequence, enter safe 
mode, and listen for  commands  from Earth. But turning around a ground  command is time  consuming,  which  could 
endanger  the  mission  during critical sequences like orbit insertions. So for critical sequences  the  response to 
anomalies is to attempt to repair the  problem (typically using a hard-coded fault response) and  then "rewind"  or roll 
back the sequence to an earlier point  indicated by a mark. 

The  mark-and-rollback  mechanism significantly complicates the generation and analysis of sequences  because it 
introduces into the execution  semantics an internal program  counter that does not progress  monotonically as does 
physical time. Sequence steps can no longer be tagged with absolute times. Instead, segments of the sequence that 
can potentially be rolled back  must be  tagged  with relative times (otherwise  rollback would have  no effect). The 
semantics of a  sequence are no longer  independent of lexical order. The resulting sequence  execution  algorithm  is 
significantly more  complicated: 

START: 
Set  SEQUENCE-POINTER to the start of the sequence 
Set  TIME-BASE to the current time 
Set  MARK-POINTER to NIL 

MAIN-LOOP: 
IF the command at SEQUENCE-POINTER is a MARK command 
THEN 

ELSE 
set MARK-POINTER  equal to SEQUENCE-POINTER 

IF the command at SEQUENCE-POINTER is an absolute  time  command  whose  time  is in the past 
THEN 

increment  SEQUENCE-POINTER 
go to MAIN-LOOP 

ELSE 
Wait for the time  T or TIME-BASE plus DELTA-T as appropriate 
Call the subroutine  corresponding to  the command  code 



IF a fault occurred THEN 
IF this is not a critical sequence 
THEN 

ELSE IF MARK-POINTER is not NIL 
THEN 

enter  safe  mode 

set SEQUENCE-POINTER to MARK-POINTER 
go  to MAIN-LOOP 

ELSE 
enter safe mode 

This  algorithm is an order of magnitude  more  complicated than the  simple  non-fault  case,  and it is actually a 
simplified version of reality. The actual  implementation of this algorithm on the  Galilleo  spacecraft  consists of 
multiple  parallel  state  machines interacting through global variables. There  are  also additional features that have 
been left  out of this  pseudo-code, like limit counters on rollbacks to prevent  infinite  loops. The development and 
analysis of critical sequences is similarly complicated, and comensurately expensive. Developing a critical sequence 
can cost orders of magnitude more than a non-critical sequence. 

Local recoveries 

One way to  address the  problems of traditional  linear  sequences is to extend  the  envelope of behavior  that is 
considered nominal for a sequence  command.  For  example, the sequence command repertoire for a spacecraft with 
redundant devices typically includes a separate command to turn  on  and  initialize each device. A hardware failure in a 
particular  device  would  cause  the  corresponding initialization command to fail. The probability of failure  can  be 
reduced by adding a command whose effect is to initialize some  device of a particular class  without  specifying the 
particular  device to be used. Such a command would  be free to cycle through all the instances of the  class until it 
found  one  that  was  working properly. It might also try various strategies to recover from  failures,  like resetting a 
device.  This  strategy is known as local recovery, and it is used extensively on  the  Cassini  spacecraft  (Hackney, 
1993). 

Local  recoveries,  however,  do not change  the fundamental semantics of sequence  execution.  Even commands with 
local recoveries can fail, and  when  they do the spacecraft has to fall back on traditional safing mechanisms. 

The traditional approach to fault management can be defended on the grounds that faults are rare. Unfortunately, the 
cost of fault  responses is associated largely with anticipating faults, not actually responding to them. So while local 
recoveries can  make individual commands  more reliable and  thus reduce the frequency of safing, it is not clear that it 
alleviates the high costs associated with  critical sequence development. 

NONLINEAR  SEQUENCING 
Non-linear or conditional sequencing is an extension to traditional sequencing designed to reduce the cost of sequence 
development by eliminating  the distinction between critical and non-critical sequences.  Non-linear  sequencing is 
based on an  extended  sequence  semantics that combines  fault and nominal  command  execution  into a unified 
framework.  The result is a system  that greatly simplifies the design  and  analysis of critical  sequences  while 
retaining the capabilities of  traditional sequences. 

The central problem of linear sequences is that the knowledge  employed  in constructing them has all been "compiled 
away" in the final sequence.  The overall impact of an  anomaly during sequence execution could range  from a minor 
glitch to a major  disaster, but there is usually no  way for the system to  tell.  For  example,  consider  the  following 
two-step sequence: 

At time X do command A 
At time Y do command B 

If something  goes  wrong  during command A, there is no way for the system to know whether the problem has any 
material  impact  on command B or not. It is entirely  possible  that the problem with A was  minor  enough that 
command B could still  be executed and have its originally intended effect. It is likewise possible that the failure of  A 
has left the system in a state where executing B would destroy the spacecraft. Because there is no information about 



the intentions and interdependencies of commands in a sequence, any deviation from  nominal behavior requires safing 
and  human intervention. 

The  solution to this  problem  is to extend  the  vocabulary of sequences to include  annotations  about the 
interdependencies  among  steps.  For  example,  one  possible  extension is to include  meta-commands  that  say 
something  like,  "The  successful  completion of step 1 is  required  for  step 2." Another possibility is to add a 
conditional  control  construct, an IF  statement, so that one could  write  something  like, "If step  1  completed 
successfully, do  command B," for step 2. 

In designing  extensions we must be careful to  keep i n  mind the original motivation for keeping the vocabulary of 
traditional sequences  impoverished:  it is to make the analysis of sequences  tractable. It does  not  take  many 
extensions to turn  sequences  into  a  full-blown  Turing-complete  programming  language,  which  would  make 
sequences subject to the halting problem and  thus impossible to analyze in general. The trick is to make  sequences 
more  expressive  while at the same  time retaining the ability to predict their behavior. 

However, to keep  things in perspective we must also keep in mind  current  limitations  on  sequence  analysis. 
Sequence  behavior is predictable with relative ease only in the case of non-critical sequences.  Even in that case, the 
only true guarantee that can be made is that the sequence will either produce  a particular desired result or that the 
spacecraft will enter safe mode, and even that is not  an absolute  guarantee, as demonstrated by Mars  Observer. It is 
never  possible to make  absolute  guarantees  about  sequence  behavior,  even non-critical sequences,  because of the 
constant potential for non-deterministic hardware faults. 

CONSTRUCTS 
Our  conditional  sequencing infrastructure is based on a few  simple  foundational constructs. From  these we can 
construct a library of more advanced constructs, some of which are briefly described in section 5. The  design is more 
powerful than traditional linear sequences, but it is not Turing-complete since it does  not  include arbitrary loops. 
Analyzing  non-linear  sequences  does not  imply solving the halting problem. 

Primitives and cognizant failure: Ultimately, any sequencing  system  must  issue  primitive  commands  whose 
operation is outside the scope of the sequencing  system itself. Ideally, the design of the sequencing  system  should 
place as few  constraints on the  structure of primitives as possible. In traditional linear  sequences,  the  only 
assumption  about  primitives is that they are subroutines that either achieve an intended  effect, or  invoke fault 
protection (which  can mean either going into safe mode or rolling  back the sequence to the most recent mark). 

For  a  nonlinear  sequencing  system we must  modify this structure somewhat.  Because  the  goal of nonlinear 
sequencing is to enable  more  robust  responses to contingencies we can no longer  allow failed primitives to invoke 
fault  protection  directly.  Instead,  primitives  should  simply report their status to the sequencer,  which will  now 
assume responsibility for taking the appropriate actions. We will assume that primitives are designed so that they 
exhibit cognizant  failure, that is, they  never fail to report when  they have failed. We further assume that there is a 
library procedure  or  macro called FAIL that is called by a primitive in order to signal a  cognizant  failure.  FAIL 
causes  the  primitive to terminate, either by returning  or by throwing an exception  (an  implementation-dependent 
design  decision).  FAIL is also allowed to accept an optional  argument  containing  implementation-dependent 
information  about the failure. 

Cognizant failure is the central feature of our design. It commits us to a strong dichotomy between a single nominal 
course of action and multiple  off-nominal  courses of action. This  design  can be contrasted  with similar systems 
which  support  multiple  courses of action without  distinguishing  between  nominal  and  off-nominal  cases  (Firby, 
1989;  Lyons, 1993). Our  formulation better reflects the structure of spacecraft operations, where  deviations  from the 
nominal are problems far more often than  they are opportunities. 

Recovery procedures: Cognizant failure is only useful if the system  can  do  something  about failures when  they 
happen.  A  sequence  segment  designed to recover  from  a  cognizant failure is called a  recovery  procedure.  There is a 
wide  range of alternative  designs  for  recovery  procedures. In  our  implementation,  recovery  procedures  are 
dynamically  scoped,  and  have a limited number of invocations  before they "expire" and propagate a failure out to 
their enclosing  dynamic  scope (if any). The  outermost  recovery  procedure, the recovery of last resort, is to enter a 
traditional safe mode. 

The  semantics of a primitive invocation in the presence of recovery procedures are: 

CALL the primitive 



IF the primitive  terminated by calling FAIL then 
IF there is a recovery procedure for this failure 

AND the recovery  procedure's  invocation  count is > 0 
THEN 
Decrement the recovery procedure's invocation  count 
CALL the recovery procedure 

ELSE 
FAIL 

There are three significant features to  note  about  these semantics: 

1. The  execution of a primitive in the nominal  case is precisely the same in the linear and  non-linear case. In  both 
cases, the system  simply calls the primitive. 

2. Primitive  invocation  is  guaranteed to terminate if its constituents (primitive and recovery  procedure)  do. 

3. In the presence of recovery  procedures a primitive  invocation will fail if  and only if both the primitive and the 
recovery  procedure fail. Thus, the probability of primitive failure in the presence of  recovery procedures,  P(FPR), is: 

P(FPR) = P(FP) * P(FR) <= P(FP) (1) 

where  P(FP) is the probability of the primitive failing and P(FR) is the probability of the recovery  procedure failing. 
Thus, the presence of a recovery  procedure is guaranteed to  only decrease the probability of failure, never to increase 
it. 

Recovery  procedures  themselves can terminate in one of three ways. 1) They  can return, in which case their contract 
is to have fulfilled the intention of their associated primitive. 2) They can restore the state of the spacecraft to one 
where the associated  primitive  can be retried. In the latter case, the recovery procedure  must be able to effect a non- 
local transfer of control to its associated primitive. This is called a RETRY, and it  is the non-linear  equivalent of a 
rollback. The  difference is that in the linear case,  rollback is automatic  whenever a failure occurs in a critical 
sequence. In the non-linear case, a rollback  happens only  when the recovery  procedure specifically requests  it. No 
distinction is made  between  critical  and non-critical cases.  RETRY is the only  looping  mechanism  in  our 
formulation. (In our  implementation, ESL, there is actually a fourth way  that a recovery can terminate: it can effect 
a non-local transfer of control to the continuation of its dynamic scope. This is called an ABORT.  The  presence of 
ABORT  does  not  adversely  impact  the  analyzability  properties of non-linear  sequences,  but  its  utility is 
questionable.) 

The third  way a recovery  procedure can terminate is by failing. In  this case, the failure is handled in exactly the same 
way as a failure in the associated primitive. If a recovery  procedure fails with the same failure as the associated 
primitive  and the recovery  procedure's retry count is greater than zero then  the result of the failure will be  to run the 
same  recovery  procedure again. The retry count is the mechanism that guards against infinite loops. 

Notice that we have not  made  any commitment to  how  recovery procedures are created, how their dynamic  scope is 
established (we only require that a recovery  procedure have a dynamic scope), or  how failures and  recovery  procedures 
are associated with  one another. These are implementation-dependent  design decisions. 

Conditions: Conditions are predicates on the state of the system.  Conditions  can be queried to determined  whether 
they are true or  false,  and they can be checked for compatibility to see if i t  is possible for two conditions to  be 
simultaneously true. Conditions are used for two purposes: to construct  goal-directed  commands  out of primitives 
that may not be goal-directed, and  to construct  higher-level  synchronization  constructs  that  prevent  mutually 
conflicting processes  from  running  simultaneously. 

Processes: Spacecraft control requires multiple parallel computational processes. In the past these processes  have 
been written so that time-sharing  among  processes  is  hard-wired into the process  code itself. We  expect  future 
spacecraft to have real operating  systems,  making  manual time-slicing unnecessary.  We will assume that any 
computational process, including primitives, that can  be called as a subroutine  can also be spawned as a process. A 
process  has at least three states: running, successfully completed,  and failed. (We will shortly add  two  more states: 
waiting for events, and waiting for time.) We will assume that  any primitive command  spawned as a process can  be 
asynchronously aborted. We will specifically not assume that aborting a primitive necessarily leaves the spacecraft 
in any  kind  of reasonable state. For  example,  aborting an attitude control primitive in the middle  could  leave a 
thruster turned on, which if left uncorrected would result in the spacecraft rapidly spinning  out of control. 



Events: Whenever parallel processes are used, synchronization and interprocess communications  (IPC)  mechanisms 
are required. We could  choose a standard repertoire of process synchronization  and IPC  mechanisms  (semaphore and 
message  queues,  for  example), but  we choose instead  to  use a unified model called an event. An event is a construct 
that combines  synchronization and IPC  functions into a single object. There are two operations  on events: a  process 
can  wait  for an event, or a process can  signal  an event. When a process waits for an event that process  blocks until 
the event  is  signaled by some  other process. The  SIGNAL method accepts an argument, which is returned  from the 
WAIT call to  any process  waiting for the event. Thus,  events can  be  used  both for synchronization and for message 
passing. 

Events are non-queuing. If a producer  process signals events faster than a  consumer  can wait for them then some 
events will be lost.  This  places an upper  bound on the amount of memory an event  can  consume.  (The  memory 
consumed by  an event is not  necessarily constant, since it must  maintain a list of pending  tasks.  However, the 
number of tasks in the system is bounded, so the size of this list is bounded.) 

Unwind-protect: Unwind-protect  (Steele, 1990, also called stack  unwinding  or  dynamic-wind)  is  a  standard 
mechanism for insuring that certain "cleanup"  procedures are executed when a dynamic  context is exited, even if that 
exit is caused by a non-local transfer of control. We assume the reader's familiarity with this concept. 

Conditionals: The final foundational  construct in our  formulation is a standard  conditional  (i.e. an IF statement). 
Again, we assume the reader's familiarity with the concept. 

Specifically excluded  from  our  formulation is a WHILE loop, or  any  kind of branching that would  be equivalent to a 
while loop. This  is the constraint that prevents  non-linear  sequencing  from  being a general-purpose  programming 
model,  and  thus  subject to the halting problem. 

,EXAMPLES 
There are a host of derived constructs that  can  be  built out of  the foundational constructs described in the previous 
section. In this section we briefly describe a few of the more common ones. 

Linear sequencing: Traditional linear sequencing is subsumed by non-linear  sequencing as follows.  First, any 
invocation of normal fault protection is replaced by a cognizant failure (i.e. an invocation of FAIL).  For non-critical 
sequences, the sequence is executed  with  a  recovery  procedure  whose  dynamic  scope is the entire sequence.  The 
recovery  procedure  invokes local fault recovery followed by safing. For critical sequences, every MARK  is  replaced 
by a recovery  procedure whose dynamic  scope is  the part of the sequence between the current mark and the next one. 
The recovery procedure  invokes local fault recovery  and  does a RETRY. 

Intentional constructs: ACHIEVE is a construct that combines a condition  and the concept of cognizant failure 
to produce a command  whose  purpose is manifest in the command.  ACHIEVE takes a condition as an arguments. 
Its semantics are: 

IF the condition is true THEN 

ELSE 
return 

perform an action to  try to make the condition true 
IF the condition is true THEN 

ELSE 
return 

FAIL 

The net effect is to guarantee that upon termination either the condition is true or the construct will fail. This is an 
example of  an intentional  construct  because the intent of the command, to make the condition true, is manifest in 
the command itself. 

Task nets: A task-net is a set of parallel processes, each of which  has  an associated event, and  each  running in a 
lexical scope that allows  access to those events. The task net also has a "master  process"  which  monitors the 
progress of the  other tasks. Task nets  can  be  used  to  build constructs like AND-PARALLEL, which runs a number 
of processes in parallel until either they all finish successfully or one fails, OR-PARALLEL,  which  runs a number 
of processes in  parallel until either one terminates successfully or  they  all fail, and WITH-GUARDIAN,  which  runs 
a pair of asymmetric  processes,  one of which  performs a task while the other  monitors a condition that the task 
depends on. 



Property locks: A property  lock is a mechanism for synchronizing tasks so that they do not attempt to achieve 
mutually  exclusive conditions. Space  does not permit a detailed description. For  more  information see (Gat, 1998). 

All of these constructs are constructed  from the foundational constructs described in section 4. For  more  examples 
see  (Gat 1997). 

SUMMARY 
We  have  described a computational  framework for nonlinear  sequencing, a methodology  for  commanding spacecraft 
that extends the traditional linear sequencing paradigm  with additional control constructs. The repertoire of control 
constructs is designed to make  complex  sequences easier to write while retaining the ability to analyze  sequences 
without  introducing  the halting problem.  Nonlinear  sequencing  can be particularly useful in the case of critical 
sequences in the presence of faults, but it can also  make  non-critical sequences more reliable and easier to write. 

An implementation and application of non-linear sequencing on  an actual spacecraft is described in (Pell, 1996) 
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